Deep Sign: Hybrid CNN-HMM for Continuous Sign Language Recognition

نویسندگان

  • Oscar Koller
  • Sepehr Zargaran
  • Hermann Ney
  • Richard Bowden
چکیده

This paper introduces the end-to-end embedding of a CNN into a HMM, while interpreting the outputs of the CNN in a Bayesian fashion. The hybrid CNN-HMM combines strong discriminative abilities of CNNs with sequence modeling capabilities of HMMs. Most current approaches in the field of gesture and sign language recognition disregard the necessity of dealing with sequence data both for training and evaluation. With our presented end-to-end embedding we are able to improve over the state-of-the-art on three challenging benchmark continuous sign language recognition tasks by between 15% & 38% relative & up to 13.3% absolute.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL

Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...

متن کامل

A Chinese sign language recognition system based on SOFM/SRN/HMM

In sign language recognition (SLR), the major challenges now are developing methods that solve signer-independent continuous sign problems. In this paper, SOFM/HMM is first presented for modeling signer-independent isolated signs. The proposed method uses the self-organizing feature maps (SOFM) as different signers’ feature extractor for continuous hidden Markov models (HMM) so as to transform ...

متن کامل

A SRN/HMM System for Signer-Independent Continuous Sign Language Recognition

Sign language recognition is to provide an efficient and accurate mechanism to transcribe sign language into text or speech. State-of-the-art sign language recognition should be able to solve the signer-independent continuous problem for practical applications. A divide-and-conquer approach, which takes the problem of continuous Chinese Sign Language (CSL) recognition as subproblems of isolated...

متن کامل

شبکه عصبی پیچشی با پنجره‌های قابل تطبیق برای بازشناسی گفتار

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...

متن کامل

Signer-Independent Continuous Sign Language Recognition Based on SRN/HMM

A divide-and-conquer approach is presented for signer-independent continuous Chinese Sign Language(CSL) recognition in this paper. The problem of continuous CSL recognition is divided into the subproblems of isolated CSL recognition. We combine the simple recurrent network(SRN) with the hidden Markov models(HMM) in this approach. The improved SRN is introduced for segmentation of continuous CSL...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016